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Abstract — The paper presents a mathematical model of the switch point with R radius > 1200 m. The switch point was treated as
a beam with variable stiffness and variable moment of inertia. A simulation was performed for a constant force loading the switch

point and for real parameters of the switch point with R =1200 m..
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INTRODUCTION

In recent years, the problem of the dynamics of railway
vehicle-turnout has been the subject of a number of
publications. The basic ones are publications from [1] to [19].
In these works, the problems of dynamics in the systems in
which the track stiffness was assumed to be constant were
considered. The phenomena occurring during the passage of
a railway vehicle through a blade (movement on a turning
track), in which the switch point would be a curved beam
(curvature of a turnout e.g. radius R = 1200 m) with variable
stiffnress and variable moment of inertia, were not
considered. Some fragments of these considerations can be
found in works [20] and [21]. Moreover, in the paper [22] the
dynamic phenomena of a rail vehicle passing through
a crossing of an ordinary turnout were investigated. In this
paper, the track stiffness in the area of the frog was taken
into account, which is twice as high as in the normal track.

The paper presents the process of examining the
dynamic phenomena of rail vehicle-turnout (switch point
and frog) using the method of computer simulation.

l.  IMATHEMATICAL MODEL OF RAILWAY VEHICLE DYNAMICS
THROUGH A RAILWAY TURNOUT

The turnout structure will be presented as a mechanical
system and a mathematical model of moving force (rail
vehicle) along a beam with variable stiffness and curvature
of radius R.

The mechanical system of the turnout is shown in Figure 1.

Passing a railway vehicle on the switch point is a branch-
off track movement. In motion through route the switch
point does not take part.

It is important to examine the dynamic behavior of a rail
vehicle turnout at a switch over to determine the alternating
time load acting on the switch point and frog.
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Fig. 1. The basic components and geometrical elements of the regular turnout are: beginning of turnout 1 (in pre-switch point contact); end
of turnout 2 (in contact after the crossing); turnout geometric center 0, which is the intersection of the stock rail axis with the closure rail
axis; radius R of the closure rail curve; turnout angle a (angle between the axes of the stock rail and the closure rail), slant of the turnout - tan
o - expressed as a fractional fraction with one in the numerator; the last turnout of the 3rd turnout; switch points 4; rheostats 5; crossing 6;
wing rails 7; guard rails 8; connecting rails 9; AOB triangle
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In Kryloff's and Bleich's work [6] analytical considerations
were performed for a beam with a constant cross-section,
however, the foundation (usually assumed to be a constant
size) on which the beam supported on subsequent sleepers
was located was omitted (the spacing between the sleepers
has a constant value of about 0.6 m). This type of solution is
based on variable separation methods, so that the solution
determining the individual displacements of the beam is
defined on a finite sum of spatial-time functions.

In the process of determining the mathematical
description defining the variable load on the needle, in the
first step the mechanical model of the load inducing system
should be determined. In order to be able to use numerical
methods in calculating the deformations of the switch point,
treated as a beam with a variable cross-section. Only the
vertical load P, was taken into consideration (Fig. 2).

P

o

Alx)

— 1(x)

Winkler foundation
Fig. 2. Load force acting on the switch point

The mathematical formula for the balance of the switch
point model is as follows:

aQ(x,t) o'w
B —— B3(x=vt)=p(x)- P
The forces present in the analyzed model were defined

by:

(1)

6M(x,t):Q(x,t)6x3%:(1@;) )

where § is a function of the Dirac delta to take account
of the actual load distribution reflecting the wheel-switch
point pressure in the force applied, velocities of v are taken
into account, while x determines the linear coordinates
describing the variation of the load force in the interval
(x € [0,L]) and p(x) determines the material density in the
interval [M/L].

Balance of moments occurring on the switch point under
load:

a[aM(X,t)Jpo-éS(xvt)p(x)

ox ow (3)
Ox ot
O'M(x,t o
M), sxv)=p() 28 @

In the next step, inserting moments into the equation of
forces was obtained:

o'w(x,t)
ol

ow\’ ox’ El(x
1+[7j

Ox

(5)

() =ei(0)- T ©
X

Taking into consideration the examined element in the
process of determining the equations describing physical
phenomena on a beam of variable cross-section, the Euler-
Bernoulli beam equation was used for the analysis, in which
a linear relation between the occurring moment and the
switch point curvature was assumed. The equation
describing the dynamics of the beam was inserted into the
relation (4). As a result, second order differential equations
were obtained, defining the deformation of a beam with
a variable cross-section due to a variable load, equation is
defined as:

) o*w(x,t)
OEI(x,t) ——5— 2
O o S(x—ut)— ow  (7)
(vt =p(x) 28
p(x).ai"’Jra; E.(X).M +
ot ox’ ox’ (8)

+p,-8(x—vt)=0

To solve the partial differential equation, specify the
initial conditions:

w(s,0)=0,Vx 9)
W) vy (10)
ot t=0

DEFORMATIONS OCCURRING IN THE SWITCH POINT

Taking into account the element of the switch point
length Land the load occurring on it, shown on the following
Figure 3 determines the forces and moments at the nodes.

P_8(x-vt)
M1 Mi(t)
( Trw F,-m{>
x
L

_ —
Fig. 3. Dynamics of the switch point with variable load

The forces on the beam with the moments are
determined by:

P =q(0,t (11)
F=-q(Lt) (12)
M =-M(0,t) (13)
M =M(L,t (14)
Normal force:
Py-8(x—vt) (15)
The force of inertia is described as:
o*w(x,t)
P(X)'T (16)
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Thus, in the initial y axis coordinate at point 0, assuming 2
that x€[0,L] the relation to the bending moment is aQ(X't)_—P 3(x—vt) p(x)~aw(;('t) (17)
determined: ox ot
As a result of mathematical transformations it was obtained:
‘w(gt)
a(xt)=a(0,t) jp ggvtdaj ﬁtz de (18)

The bending moments at the start and end of the beam section with a deflection function, w(x). In order to obtain

are determined by: the main equation describing the dynamics of the switch
oM (x t) point, the initial conditions were defined:

2 =Q(x,t)-dx (19) ow(x,t) _

ox w(x,t) (21)
. ox
M(x,t)=M(0,t)+ [ Q(& t)d& (20)

0 ow(x, t)

At this point, using the finite element method, we move ot (X t) (22)

on to the formulation of the Euler-Bernoulli partial

differential equation of a curved beam with a variable cross- Then the initial conditions were inserted into the relation

(8) and the result was obtained:
p(x)-W(x,t)+(W'(x,t)-EI(x)) =P,-5(x—vt) (23)
p(x)-W(x,t)-uw (x)+ ( ”(x,t)-EI(x))”-w' (x)=—P,-8(x—vt)-w’(x) (24)
Later on, using mathematical transformations, it was obtained:
LLp(x)~ W(x,t)-u (x)dx—o—j "(x,t)-EI( x)) "(x )ds=—J':Po~6(x—vt)~w*(x)dx (25)

Integrating the first part of the equation (25) phrase by parts has been obtained:

J.OL (w"(x,t)-EI(x))” w'(x)dx

= J,w(ot)-EI(x)) o 85w (x)-(w (o) EI( ))0 (26)
ow’ (x) i ow’ (x) '
- -EI(x))- - -EI(x))-
(w81 =5 (s €00)- =2
ow' (x)
,t)-El d
[t i) 2 o
Taking into account the deformations at the beginning ) '
and ends of the beam, the moments due to action the load Qlx,t) =(W 'EI(X)) (27)
force added to the top surface of a curved variable cross- )
section beam determined by: M(x,t) =w -El(x) (28)
Therefore equations (23) and (24) will take on a form:
L
. - « L N « « «
(w"-EI(x)) -w (x)O:Q(L,t)-w (x)], =0 w' (L)-Q(©,1) - w’(0)=—F -w’ (L)-F*-w'(0) (29)
aw(s) o'l o ow'
we1(s)- 2 ) ey ) v v (30)
0s 0Os |, 0Os | 0Os |,

In turn the second part of equation (26) will look like this:
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Lo, "o Lo, ow' (s . . ow' ow'
L(W (s,t)-El(s)) -w (s)dx:jow (s,t)-El(s)- 652( ):—Fjb-w (L)-F"-w (0)—|\/|JF’-ELJr|\/|}’-EO (31)
Then, taking into account the properties of Dirac function and their inclusion in equations (31), (32) and (25), it was

obtained:

fLPO . 6()( 7vt) -w (x) ~dx=p, - w (vt) (32) The coefficients of Hermite polynomial are described by:
0

The expression in which no initial condition in the [U.]_)hl(x):173(§]z+2(1j3 54
approach to the function w(x) describing the beam ' L L

deflection is taken into account results in the impossibility of

solving the differential equation. For this reason, in the finite X ¥ (x)

element method solving process, we will consider the [Gi]—>hz (X):L‘{L_Z(Lj +(Lji| (35)
process of two displacements and two other rotations.

We assume that the w(xt) function can be accurately ) 3
reproduced as a linear combination of polynomials of [Uj]ﬁha(x)zg.(lj ,2.(5j (36)
maximum third degree called Hermite polynomials

indicated below.

w(xt)= 3y, (t)h, (x) (33) [ej]—>h4(X):L(fJ+(J (37)

n=1

If the above dependencies are inserted into equation 34, it is obtained:

w(x,t)=y,-h, (x)+6,-h, (x)+y,-hy (x)+86,-h,(x) (38)
So we can get speed and acceleration:
(%,t)=Y,-h, (x)+6,-h, (x)+Y,-h, (x) +6, -h, (x) (39)
w(kt)=2y,(t)-h,(x) (40)
w(%,t) =¥, h, (x)+8,-h, (x)+,-h, (x)+6, -h, (x) (41)

Wi )= 39,(6) b, () 2)

If we also accept w(x) as a function, it takes the properties of the Hermite function:

L < L : 5Zhn (x) 2
_[op(x)-Z[yn(t)-hn(x)]-hm(x)dx+joz yn(t).T El(x)h,, (x)ox
n=1 n=1 (43)
i, ()48 -y (0) - 0 e ey
! boox ‘L Ox ‘ .
This means that we will be able to describe mathematically the dynamics of the beam described by arrays:
mll le m13 m14 y‘ (Vt) kll klZ k13 k14 y'\ (Vt) Fib (Vt) hl (Vt)
le mZZ m23 m24 6i (Vt) + kZl kZZ k23 k24 e\' (Vt) — M:J (Vt) *P hZ (Vt) (44)
m31 m32 m33 m34 yj (Vt) k31 k3Z k33 k34 yj (Vt) F]b (Vt) ’ h3 (Vt)
My My My My |6 (vt) | ke ke ke ke ,(vt) | | Mp(vt) h, (vt)
Where: obtain a global equation defining the dynamics of the beam
L formulated for the whole structure:
M; =_L p(x)-hy(x)-h; (x)dx (45) B
i My +Ky =—Ph(vt) (47)
K, =], b ()-EI(x)-h" (x)dx (46)
. X X . Il. SIMULATION RESULTS
The resulting matrices are symmetric. If we combine them
into pairs of so-called elementary matrices it is possible to The simulation will be performed for a constant vertical

force P =12 kN. As a design example, a variable cross section
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beam (as a turnout switch point) with supports between
sleepers L= 0.6 m will be used. For the calculations, the unit
mass of the beam for the S62 rail and the flexural stiffness
El = 1.96 GNm? were used. The system is loaded with
a constant concentrated force Po = 12 kN moving at
a constant speed v= 37 m/s. In the calculations, beam
deflections and vibrations were analyzed depending on the
position of the force moving along the beam. The results of

Oawign sty 1| Modal 1

the calculations are shown in Figure 4 + Figure 6.

Figure 4 shows the results of simulation tests of changes
in deformation of the blade with a vertical force acting on
the blade in case of excitation in the wave beam w(z,t) such
that conditions z1(Lo) =0.001 m, z1(Po) =-0.002 m are fulfilled
at the moment. It follows that, when subjected to vertical
and lateral forces (due to wheel/rail contact), the initial
amplitude of vibration at the beginning of the beam is 3 mm.
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Fig. 4. First eigenmode for a variable cross section beam (switch point) for occurring displacements
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Fig. 5. Second eigenmode for a variable cross section beam (switch point) for occurring displacements
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Fig. 6. Third eigenmode for a variable cross section beam (switch point) for the displacements occurring (two forces: vertical and transverse

force resulting from wheel/rail contact)
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Fig. 7. Fourth eigenmode for a variable cross section beam (switch point) for occurring displacements (only vertical force acts)

Design study 1 | Modal 1

Displacement
Muﬂnllﬂd&.
mode 4,
Fre:
1.1931e+2
(Hz)
Hax_1.0000e+0
9.6246e-1
9.2492¢-1
,[:.uiml
. B.A985e-1
812311
. 7.7477e-1
oy 7372341
6.9969¢-1
m&62l§e-l
— 20
=
Hin 5.4954¢-1

Y

l/x

Fig. 8. Fourth upright form for a variable cross section beam (turnout blade) for occurring displacements (vertical and lateral force resulting

from wheel/rail contact)

Analysis of the results of the simulation (Fig. 4 + Fig. 8)
shows that the eigenmodes of the switch point have low-
frequency components at the action of the normal force
only, whereas in the case of the action of the normal and
transverse force resulting from the wheel's contact with the
switch point, the damping occurring in the switch point is
very effective. In the form of solutions presented in
equations (7) and (8) it was assumed that they represent the
composition of individual wave modes. The solution of the
whole problem of cooperation of the model of moving load
on the blade is connected with the number of modes
necessary to take into account in the adopted form of
solutions the equations describing the load movement on
the beam to ensure appropriate, assumed numerical
convergence when determining the wave development
coefficients. Numerical simulations of the displacement of
vibrations of beams with variable cross-sections require
calculations to be carried out at different values of given
parameters (mass-inertia parameters and switch point
support parameters). The result of an exemplary simulation
of beam vibrations described by the mathematical model in
equation (7) and (8) for the vertical and transverse force
resulting from the wheel/switch point contact is shown in
Figure 8. It is visible that the critical value of the amplitude of

1

vibration displacements - critical in relation to the assumed
value of deflections z1(Lo) = z1(Po) = 5 mm - is exceeded.

A simulation was also carried out to determine the
maximum and minimum stresses in the switch point as
beams of variable cross-section (Fig. 9 and Fig. 10).

Simulations have been performed to determine the
displacement in the direction of the XYZ axis. These results
are shown in Figure 11 + Figure 13.

Using the ANSYS program, a simulation was performed
using the Van Mises method, which determined the
maximum and minimum stresses along the needle. The
structure of the switch point is similar to the system with
variable stiffness, which is often considered in cutting
systems [23]. The results are shown in Figure 14.

The simulations carried out allowed to determine the
deformations in three directions caused by the load. The
stress distribution was also obtained, which indicates the
influence of the load on the formation of deformations and
displacements in the analyzed case. The maximum beam
deflection, i.e. the elastic displacement in the z-axis
direction, occurs between the sleepers and is 1.1398 mm,
whereas the maximum longitudinal displacement of the
beam of 3.2194 mm occurs at its end.
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Principal
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Max 1.0346e-1
=3

Design study 1] Stuctwral 2

Fig. 9. Maximum switch point stress - variable cross section beams
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Fig. 10. Minimum switch point stress - variable cross section beams
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Fig. 11. Movement of the switch point in the x-direction of the variable cross section beam
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Fig. 12. Movement of switch point in the direction of y - variable cross section beams
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Fig. 13. Movement of the switch point in the z-direction of a variable cross section beam
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Fig. 14. Simulation of Von Mises for the blade - variable cross section beams

CONCLUSIONS

Analysis of the results of simulations carried out on the
adopted model of displacement of vibrations of the beam
model is dominated by low-frequency components,
similarly as in the case of a beam with vertical force occurring
between the wheel and the switch point. For a model with
vertical force and transverse force resulting from wheel-rail
contact phenomena, there is greater damping of
eigenmodes than for a model of vertical force movement in
wheel-rail contact. The analysis of the results of simulation
of beam vibration displacements resulting from the
cooperation of the wheel and the switch point shows that
the load movement in the form of force is accompanied by
awave string (three running and three standing wave modes
were analyzed), in which the assembly can be seen the
maximum preceding and the minimum "backward"
displacements, while the ratio of the absolute maximum to
the absolute minimum "backward" wave is more than
9mm.

During the simulation of higher load motion velocities
and analysis of subsequent excited natural frequencies of
the point switch own vibrations, a spatial-time diagram of
vibration displacements shows a clearer force interaction
with the vertical and transverse force resulting from the
wheel's contact with the switch point, two extrema running
parallel to each other - maximum waves (situated at an angle
to the time axis - in the w(z,t) system) become visible.

The numerical analysis carried out in this paper made it
possible to determine the displacements and deformations
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in the models subjected to moving loads. The presented
results of numerical analysis were obtained in the ANSYS 17
Workbench module. Continuous beam solutions using
analysis methods are highly complex and time-consuming,
while ANSYS allows quick numerical calculations using FEM.

WSPOLPRACA POJAZDU SZYNOWEGO Z ROZJAZDEM
Artykut przedstawia model matematyczny iglicy roziazdu kolejowego o
promieniu r>1200 m. Iglica traktowana jest jako belka o zmiennej
sztywnosdizmiennymmomende bezwtadnosd (wzdhuz dtugosdiglicy).
Przedstawiono symulage modelu matematycznego iglicy obcigzong
stafa stg w kontakde kofa z szyng, korzystajac z rzeczywistych
parametrow takiej iglicy.

Slowa kluczowe: rozjazd, pojazd szynowy, postaciwlasne, krzywizna
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