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Abstract  The paper presents a mathematical model of the switch point with R radius > 1200 m. The switch point was treated as 
a beam with variable stiffness and variable moment of inertia. A simulation was performed for a constant force loading the switch 
point and for real parameters of the switch point with R = 1200 m.. 
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INTRODUCTION 

In recent years, the problem of the dynamics of railway 
vehicle-turnout has been the subject of a number of 
publications. The basic ones are publications from [1] to [19]. 
In these works, the problems of dynamics in the systems in 
which the track stiffness was assumed to be constant were 
considered. The phenomena occurring during the passage of 
a railway vehicle through a blade (movement on a turning 
track), in which the switch point would be a curved beam 
(curvature of a turnout e.g. radius R = 1200 m) with variable 
stiffness and variable moment of inertia, were not 
considered. Some fragments of these considerations can be 
found in works [20] and [21]. Moreover, in the paper [22] the 
dynamic phenomena of a rail vehicle passing through  
a crossing of an ordinary turnout were investigated. In this 
paper, the track stiffness in the area of the frog was taken 
into account, which is twice as high as in the normal track.  

The paper presents the process of examining the 
dynamic phenomena of rail vehicle-turnout (switch point 
and frog) using the method of computer simulation. 

I. MATHEMATICAL MODEL OF RAILWAY VEHICLE DYNAMICS 

THROUGH A RAILWAY TURNOUT 

The turnout structure will be presented as a mechanical 
system and a mathematical model of moving force (rail 
vehicle) along a beam with variable stiffness and curvature 
of radius R. 

The mechanical system of the turnout is shown in Figure 1.  
Passing a railway vehicle on the switch point is a branch-

off track movement. In motion through route the switch 
point does not take part.  

It is important to examine the dynamic behavior of a rail 
vehicle turnout at a switch over to determine the alternating 
time load acting on the switch point and frog. 

 
Fig. 1. The basic components and geometrical elements of the regular turnout are: beginning of turnout 1 (in pre-switch point contact); end 

of turnout 2 (in contact after the crossing); turnout  geometric center 0, which is the intersection of the stock rail axis with the closure rail 

axis; radius R of the closure rail curve; turnout angle α (angle between the axes of the stock rail and the closure rail), slant of the turnout - tan 

α - expressed as a fractional fraction with one in the numerator; the last turnout of the 3rd turnout; switch points 4; rheostats 5; crossing 6; 

wing rails 7; guard rails 8; connecting rails 9; AOB triangle 

https://doi.org/10.24136/tren.2019.004
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In Kryloff's and Bleich's work [6] analytical considerations 
were performed for a beam with a constant cross-section, 
however, the foundation (usually assumed to be a constant 
size) on which the beam supported on subsequent sleepers 
was located was omitted (the spacing between the sleepers 
has a constant value of about 0.6 m). This type of solution is 
based on variable separation methods, so that the solution 
determining the individual displacements of the beam is 
defined on a finite sum of spatial-time functions. 

In the process of determining the mathematical 
description defining the variable load on the needle, in the 
first step the mechanical model of the load inducing system 
should be determined. In order to be able to use numerical 
methods in calculating the deformations of the switch point, 
treated as a beam with a variable cross-section. Only the 
vertical load Po was taken into consideration (Fig. 2). 

 
Fig. 2. Load force acting on the switch point 

The mathematical formula for the balance of the switch 
point model is as follows: 
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The forces present in the analyzed model were defined 
by: 
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where δ is a function of the Dirac delta to take account 
of the actual load distribution reflecting the wheel-switch 
point pressure in the force applied, velocities of v are taken 
into account, while x determines the linear coordinates 
describing the variation of the load force in the interval 
(x  [0,L]) and ρ(x) determines the material density in the 
interval [M/L]. 

Balance of moments occurring on the switch point under 
load: 
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In the next step, inserting moments into the equation of 
forces was obtained: 
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Taking into consideration the examined element in the 
process of determining the equations describing physical 
phenomena on a beam of variable cross-section, the Euler-
Bernoulli beam equation was used for the analysis, in which 
a linear relation between the occurring moment and the 
switch point curvature was assumed. The equation 
describing the dynamics of the beam was inserted into the 
relation (4). As a result, second order differential equations 
were obtained, defining the deformation of a beam with  
a variable cross-section due to a variable load, equation is 
defined as: 
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To solve the partial differential equation, specify the 
initial conditions: 
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DEFORMATIONS OCCURRING IN THE SWITCH POINT 

Taking into account the element of the switch point 
length L and the load occurring on it, shown on the following 
Figure 3 determines the forces and moments at the nodes. 

 
Fig. 3. Dynamics of the switch point with variable load 

The forces on the beam with the moments are 
determined by: 

 b
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 b
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Normal force: 
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The force of inertia is described as: 
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Thus, in the initial y axis coordinate at point 0, assuming 
that x ∈ [0,L] the relation to the bending moment is 
determined: 
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As a result of mathematical transformations it was obtained: 
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The bending moments at the start and end of the beam 
are determined by: 
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At this point, using the finite element method, we move 
on to the formulation of the Euler-Bernoulli partial 
differential equation of a curved beam with a variable cross-

section with a deflection function, w(x). In order to obtain 
the main equation describing the dynamics of the switch 
point, the initial conditions were defined: 
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Then the initial conditions were inserted into the relation 
(8) and the result was obtained: 
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Later on, using mathematical transformations, it was obtained: 
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Integrating the first part of the equation (25) phrase by parts has been obtained: 
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Taking into account the deformations at the beginning 
and ends of the beam, the moments due to action the load 
force added to the top surface of a curved variable cross-
section beam determined by: 
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Therefore equations (23) and (24) will take on a form: 
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In turn the second part of equation (26) will look like this: 
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Then, taking into account the properties of Dirac function and their inclusion in equations (31), (32) and (25), it was 
obtained: 
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The expression in which no initial condition in the 
approach to the function w(x) describing the beam 
deflection is taken into account results in the impossibility of 
solving the differential equation. For this reason, in the finite 
element method solving process, we will consider the 
process of two displacements and two other rotations.  
We assume that the w(x,t) function can be accurately 
reproduced as a linear combination of polynomials of 
maximum third degree called Hermite polynomials 
indicated below. 
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The coefficients of Hermite polynomial are described by: 
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If the above dependencies are inserted into equation 34, it is obtained: 
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If we also accept w(x) as a function, it takes the properties of the Hermite function: 
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This means that we will be able to describe mathematically the dynamics of the beam described by arrays: 
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Where: 
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The resulting matrices are symmetric. If we combine them 
into pairs of so-called elementary matrices it is possible to 

obtain a global equation defining the dynamics of the beam 
formulated for the whole structure: 

 0My Ky Ph t    (47) 

II. SIMULATION RESULTS 

The simulation will be performed for a constant vertical 
force P = 12 kN. As a design example, a variable cross section 
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beam (as a turnout switch point) with supports between 
sleepers L= 0.6 m will be used. For the calculations, the unit 
mass of the beam for the S62 rail and the flexural stiffness  
EI = 1.96 GNm2 were used. The system is loaded with  
a constant concentrated force P0 = 12 kN moving at  
a constant speed v= 37 m/s. In the calculations, beam 
deflections and vibrations were analyzed depending on the 
position of the force moving along the beam. The results of 

the calculations are shown in Figure 4 ÷ Figure 6. 
Figure 4 shows the results of simulation tests of changes 

in deformation of the blade with a vertical force acting on 
the blade in case of excitation in the wave beam w(z,t) such 
that conditions z1(L0) = 0.001 m, z1(P0) = -0.002 m are fulfilled 
at the moment. It follows that, when subjected to vertical 
and lateral forces (due to wheel/rail contact), the initial 
amplitude of vibration at the beginning of the beam is 3 mm.

  

 

Fig. 4. First eigenmode for a variable cross section beam (switch point) for occurring displacements 
 

 
Fig. 5. Second eigenmode for a variable cross section beam (switch point) for occurring displacements 

 

 

 

 
Fig. 6. Third eigenmode for a variable cross section beam (switch point) for the displacements occurring (two forces: vertical and transverse 

force resulting from wheel/rail contact) 
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Analysis of the results of the simulation (Fig. 4 ÷ Fig. 8) 
shows that the eigenmodes of the switch point have low-
frequency components at the action of the normal force 
only, whereas in the case of the action of the normal and 
transverse force resulting from the wheel's contact with the 
switch point, the damping occurring in the switch point is 
very effective. In the form of solutions presented in 
equations (7) and (8) it was assumed that they represent the 
composition of individual wave modes. The solution of the 
whole problem of cooperation of the model of moving load 
on the blade is connected with the number of modes 
necessary to take into account in the adopted form of 
solutions the equations describing the load movement on 
the beam to ensure appropriate, assumed numerical 
convergence when determining the wave development 
coefficients. Numerical simulations of the displacement of 
vibrations of beams with variable cross-sections require 
calculations to be carried out at different values of given 
parameters (mass-inertia parameters and switch point 
support parameters). The result of an exemplary simulation 
of beam vibrations described by the mathematical model in 
equation (7) and (8) for the vertical and transverse force 
resulting from the wheel/switch point contact is shown in 
Figure 8. It is visible that the critical value of the amplitude of 

vibration displacements - critical in relation to the assumed 
value of deflections z1(Lo) = z1(Po) = 5 mm - is exceeded. 

A simulation was also carried out to determine the 
maximum and minimum stresses in the switch point as 
beams of variable cross-section (Fig. 9 and Fig. 10). 

Simulations have been performed to determine the 
displacement in the direction of the XYZ axis. These results 
are shown in Figure 11 ÷ Figure 13. 

Using the ANSYS program, a simulation was performed 
using the Van Mises method, which determined the 
maximum and minimum stresses along the needle. The 
structure of the switch point is similar to the system with 
variable stiffness, which is often considered in cutting 
systems [23]. The results are shown in Figure 14. 

The simulations carried out allowed to determine the 
deformations in three directions caused by the load. The 
stress distribution was also obtained, which indicates the 
influence of the load on the formation of deformations and 
displacements in the analyzed case. The maximum beam 
deflection, i.e. the elastic displacement in the z-axis 
direction, occurs between the sleepers and is 1.1398 mm, 
whereas the maximum longitudinal displacement of the 
beam of 3.2194 mm occurs at its end. 

 

 
Fig. 7. Fourth eigenmode for a variable cross section beam (switch point) for occurring displacements (only vertical force acts) 

 
Fig. 8. Fourth upright form for a variable cross section beam (turnout blade) for occurring displacements (vertical and lateral force resulting 

from wheel/rail contact) 



transEngin Volume 1, Issue 1 / 2019 

 45 

 

Fig. 9. Maximum switch point stress - variable cross section beams 

 
Fig. 10. Minimum switch point stress - variable cross section beams 

 
Fig. 11. Movement of the switch point in the x-direction of the variable cross section beam 

 
Fig. 12. Movement of switch point in the direction of y - variable cross section beams 
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CONCLUSIONS 

Analysis of the results of simulations carried out on the 
adopted model of displacement of vibrations of the beam 
model is dominated by low-frequency components, 
similarly as in the case of a beam with vertical force occurring 
between the wheel and the switch point. For a model with 
vertical force and transverse force resulting from wheel-rail 
contact phenomena, there is greater damping of 
eigenmodes than for a model of vertical force movement in 
wheel-rail contact. The analysis of the results of simulation 
of beam vibration displacements resulting from the 
cooperation of the wheel and the switch point shows that 
the load movement in the form of force is accompanied by 
a wave string (three running and three standing wave modes 
were analyzed), in which the assembly can be seen the 
maximum preceding and the minimum "backward" 
displacements, while the ratio of the absolute maximum to 
the absolute minimum "backward" wave is more than  
9 mm.  

During the simulation of higher load motion velocities 
and analysis of subsequent excited natural frequencies of 
the  point switch own vibrations, a spatial-time diagram of 
vibration displacements shows a clearer force interaction 
with the vertical and transverse force resulting from the 
wheel's contact with the switch point, two extrema running 
parallel to each other - maximum waves (situated at an angle 
to the time axis - in the w(z,t) system) become visible.  

The numerical analysis carried out in this paper made it 
possible to determine the displacements and deformations 

in the models subjected to moving loads. The presented 
results of numerical analysis were obtained in the ANSYS 17 
Workbench module. Continuous beam solutions using 
analysis methods are highly complex and time-consuming, 
while ANSYS allows quick numerical calculations using FEM. 

WSPÓŁPRACA POJAZDU SZYNOWEGO Z ROZJAZDEM 

Artykuł przedstawia model matematyczny iglicy rozjazdu kolejowego o 
promieniu r≥1200 m. Iglica traktowana jest jako belka o zmiennej 
sztywności i zmiennym momencie bezwładności (wzdłuż długości iglicy). 
Przedstawiono symulację modelu matematycznego iglicy obciążoną 
stała siłą w kontakcie koła z szyną, korzystając z rzeczywistych 
parametrów takiej iglicy. 

Słowa kluczowe: rozjazd, pojazd szynowy, postaci własne, krzywizna 

BIBLIOGRAPHY 

[1] Kassa E., Andersson C., Nielsen Jens C. O. (2006) Simulation of 
dynamic interaction between train and railway turnout. Vehicle 
System Dynamics, Vol. 44, No. 3, March 2006, pp. 247-258 

[2] Wan C., Markine V.L., Shevtsov I.Y., Dollevoet R.P.B.J. (2013) 
Improvement of train-track interaction in turnouts by optimising 
the shape of crossing nose. IAVSD 2013: 23rd International 
Symposium on Dynamics of Vehicles on Roads and Tracks, 
Qingdao, China, 19-23 August 2013 

[3] Lu C., Rodríguez-Arana B., Prada J.G., Meléndez J., Martínez-
Esnaola J.M. (2019) A Full explicit finite element simulation for 
the study of interaction between wheelset and switch panel. 
Vehicle System Dynamics, International Journal of Vehicle 
Mechanics and Mobility, DOI: 10.1080/00423114.2019.1575425 

 
Fig. 13. Movement of the switch point in the z-direction of a variable cross section beam 

 
Fig. 14. Simulation of Von Mises for the blade - variable cross section beams 



transEngin Volume 1, Issue 1 / 2019 

 47 

[4] Pålsson Björn A. (2015) Optimisation of railway crossing 
geometry considering a representative set of wheel profiles. 
Vehicle System Dynamics, Vol. 53, No. 2, 274-301, DOI: 
10.1080/00423114.2014.998242 

[5] Pålsson Björn A., Nielsen Jens C.O. (2012) Wheel–rail interaction 
and damage in switches and crossings. Vehicle System 
Dynamics, Vol. 50, No. 1, January 2012, pp. 43-58 

[6] Pålsson Björn A., Nielsen, Jens C.O. (2015) Dynamic vehicle-track 
interaction in switches and crossings and the influence of rail pad 
stiffness – field measurements and validation of  
a simulation model. Vehicle System Dynamics, 2015, Vol. 53, No. 
6, 734-755, DOI: 10.1080/00423114.2015.1012213 

[7] Pålsson Björn A. (2013) Design optimisation of switch rails in 
railway turnouts. Vehicle System Dynamics, DOI: 
10.1080/00423114.2013.807933 

[8] Pålsson Björn A. (2014) Optimisation of Railway Switches and 
Crossings. Thesis For The Degree Of Doctor Of Philosophy In 
Solid And Structural Mechanics, Department of Applied 
Mechanics, Chalmers University Of Technology, Göteborg, 
Sweden 

[9] Nicklisch D., Kassa E., Nielsen J., Ekh,M., Iwnicki S. (2010) 
Geometry and stiffness optimization for switches and crossings, 
and simulation of material degradation. Proceedings of the 
Institution of Mechanical Engineers, Part F: Journal of Rail and 
Rapid Transit, Volume: 224, Issue: 4, pp. 279-292. DOI: 
10.1243/09544097JRRT348 

[10] Kassa E., Nielsen C.O. (2008) Stochastic analysis of dynamic 
interaction between train and railway turnout. Vehicle System 
Dynamics, Vol. 46, No. 5, May 2008, pp. 429-449 

[11] Wan Ch., Markine V., Shevtsov I. (2014) Optimisation of the 
elastic track properties of turnout crossings. Proceedings of the 
Institution of Mechanical Engineers, Part F: Journal of Rail and 
Rapid Transit, Volume: 230, Issue: 2, pp. 360-373, DOI: 
10.1177/0954409714542478 

[12] Zhu J.Y., Thompson D.J. (2009) Characterization of forces, 
dynamic response, and sound radiation from an articulated 
switch sleeper in a turnout system. Proceedings of the Institution 
of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 
DOI: 10.1243/09544097JRRT302, Volume: 224, Issue: 2, pp. 53-60 

[13] Kassa E., Johansson G. (2006) Simulation of train–turnout 
interaction and plastic deformation of rail profiles. Vehicle 
System Dynamics, Vol. 44, Supplement, pp. 349-359 

[14] Ekberg A., Paulsson B. (2010) Innotrack, Concluding Technical 
Report. International Union of Railways (UIC), Printing: Intellecta 
Infolog, Solna, ISBN: 978-2-7461-1850-8 

[15] Chiou S-B., Yen J.-Y. (2017) Modeling of railway turnout 
geometry in the frog area with the vehicle wheel trajectory. 
Proceedings of the Institution of Mechanical Engineers, Part F: 
Journal of Rail and Rapid Transit, Volume: 232, Issue: 6,  
pp. 1598-1614, DOI: 10.1177/0954409717739734 

[16] Wan C., Markine V.L., Shevtsov I.Y. (2014) Improvement of 
vehicle-turnout interaction by optimising the shape of crossing 
nose. Vehicle System Dynamics, Vol. 52, No. 11, pp. 1517–1540, 
DOI: 10.1080/00423114.2014.944870 

[17] Kassa E., Nielsen J. C.O. (2008) Dynamic interaction between 
train and railway turnout: full-scale field test and validation of 
simulation models. Vehicle System Dynamics, International 
Journal of Vehicle Mechanics and Mobility, Vol. 46, Supplement, 
pp. 521–534, DOI: 10.1080/00423110801993144 

[18] Alfi S., Bruni S. (2009) Mathematical modelling of train-turnout 
interaction. Vehicle System Dynamics, International Journal of 
Vehicle Mechanics and Mobility, Vol. 47, No. 5, pp. 551–574, 
DOI: 10.1080/00423110802245015 

[19] Xin L., Markine V.L., Shevtsov I.Y. (2016) Numerical analysis of the 
dynamic interaction between wheel set and turnout crossing 
using the explicit finite element method. Vehicle System 
Dynamics, International Journal of Vehicle Mechanics and 
Mobility, DOI: 10.1080/00423114.2015.1136424 

[20] Kisilowski J., Kowalik R., Kwiecień K. (2014) Analiza dynamiczna 
przejazdu pociągów szybkiej kolei przez rozjazd kolejowy. 
Logistyka 6/2014, pp. 5465-5477 

[21] Kwiecień K. (2017) Wybrane zagadnienia dynamiki iglicy 
rozjazdu kolejowego dla kolei dużych prędkości. Rozprawa 
doktorska, UTH Radom 

[22] Kisilowski J., Skopińska H. (1983) Dynamika krzyżownicy rozjazdu 
zwyczajnego, Archiwum Inżynierii Lądowej, Tom XXIX, 4/83, 
Warszawa 

[23] Szparaga Ł., Ratajski J., Olik R. (2010) Modelowanie i symulacja 
numeryczna stanu naprężeń i odkształceń w warstwie 
wierzchniej noża strugarki do obróbki drewna pokrytego 
powłoką przeciwzużyciową. Inżynieria Materiałowa 4/2010,  
pp. 1249-1254 

 

 


