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Abstract − In the paper a mathematical model addressed to non-sharp edges in the images is proposed. This model is  
based on and integral transform with Haar-Gauss wavelet and matching algorithm of bandwidth, such model is used to 
detection of  the edges in images with high-level noises, both in the x plane and the frequency domains. There is shown 
that applying the integral Haar-Gaussian transformation the detection of single and double edges is possible. 
Demonstrated in the paper results confirm that wavelet transform supported by the matching wavelet algorithm of 
wavelength bandwidth make an important exploration tool of the images with the edges possessing a large depth of 
sharpness. 
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INTRODUCTION 
Images obtained naturally or artificially always 

contain characteristic areas. Physical parameters 
such as brightness, luminance or chromaticity 
change slowly inside the highlighted area, but 
change extremely quickly between the areas that 
create the edges. The edge is a transition between 
different areas and often carries interesting 
physical information. In image processing, edge 
detection is the basis of many applications such as 
object recognition in transport vision systems, 
automated observation, automatic control, 
biomedical imaging, electro-optical measurements, 
etc. Measuring systems are often based on optical 
imaging. Objects can be measured at different 
distances from the imaging system. This generates 
two problems. The first problem is the different 
magnifications for objects at different distances 
that can make a significant measurement error. 
The second problem is the imaging system has 
limited depth of field (DOF). Inside the depth of 
field, the image is sharp enough, but outside the 
depth of field (focus), the edges in the image 
become non-sharp, which is known as the lack of 
focus effect. When measuring a large object, the 
two problems mentioned above become 

important. In addition, the imposed noise worsens 
the results. 

Edge detection is currently most often carried 
out using integral digital methods. If the image is 
not noisy, then these methods give good results. 
However, for blurry images, edge detection using 
digital integral methods can be affected by 
significant errors. To overcome the second 
problem related to depth of field, wavelet 
transforms [1-8] have recently been proposed for 
detecting noisy edges. The results are more 
accurate and adapt better than standard digital 
integral methods. 

The purpose of this article is to propose an 
integral wavelet transform for the detection of 
non-sharp edges implemented in intelligent vision 
transport systems, whose mother wavelet is the 
Haar-Gauss function. A wavelet of this type 
proposed for edge detection can be used both in 
x  space and in the frequency domain . The 
bandwidth matching algorithm is used to achieve 
high precision edge detection. 

1. MATHEMATICAL MODEL OF EDGE FUNCTION 
An ideal image of a straight edge (x) (geometric 

function of an ideal edge) (Fig. 1a) can be described 
by the equation (1):
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where: sgn(x) – character function. 

 
Fig. 1. Model of an ideal edge (x): a) model of real edge f(x), b) model of span index g(x) with the geometric 
edge function (x) 

In simplification, the ideal image of a straight 
edge (x) is called the geometric function of  
a straight edge. 

The real edge image f(x) is a transition zone, not 
a geometric straight edge, and is most often 
uniformly variable. Moreover, the real edge image 
is the edge function f(x) described by (2). 
Mathematically, the edge function f(x) can be 
described as a convolution of the function of the 
span index g(x) and the geometric edge function 
(x). 

= f(x) g(x) (x)  (2) 

The function of span index g(x) contains all 
factors that allow to creating a real edge image. 
Naturally, the function of span index is most often 
a Gaussian function (3): 

  
 = −  

  

2
x

g(x, ) exp  (3) 

For example, vibrations make the image of  
a straight edge a slow-changing transition zone. 
Substituting equations (1) and (3) to (2)  
a function describing the real edge is obtained (4):
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where: erf(x) – function of error. 
Standardized parameters ensure convergence f(x) to a for x —» ±. For the purposes of analysis, 
equivalent edge width S is defined as a derivative of the function of the actual edge f(x). The derivative 
of the function k (4) at x=0 has the form (5). 
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Accordingly, the equivalent edge width takes the 
form (6): 

 = =  = 
0

2a
S 1,77

k
 (6) 

which can be determined by function of span index 
g(x, ) of edge function f(x). The function of span 
index g(x, ) and equivalent edge width S are 
shown on the Figure 1b. 

By using the properties of the Fourier transform, 
the bandwidth W in the frequency domain ν for 
the edge function f(x) is described as (7) and is 
understood as the uncertainty factor (UF): 

 = = =
 

01 1 k
W

S 2a
 (7) 

The small S and wide W describe the sharp 
edge, which means that more high frequency 
components are contained in f(x). Conversely, if the 
object has more non-sharp edges (large S), the 
narrower its bandwidth W is. In practical edge 
detection, this means that different object 
structures (i.e. different edge locations) have 
different frequency bandwidths for the same edge. 
Specifying, different functions of the span index g 
give different edge widths S. In addition, the 
image can be heavily noisy, which has hitherto 
prevented the use of standard integral digital 
methods for detecting non-sharp (noisy) edges. 

2. HAAR-GAUSS INTEGRAL WAVELET TRANSFORM 
For the detection of non-sharp edges, an 

integral wavelet transform with the Haar-Gauss 
wavelet hs(x) is proposed (8).
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          

2 2

s

2 x q x q 2 x q x q
h (x) exp exp

s s s s s s
 (8) 

where: s - positive scaling parameter, q - extending parameter. 
Figures 2a and 2b illustrate Haar-Gauss wavelets hs(x) for large and small expansion parameters (q=5s and 
q=2.5s). 

 

 
Fig. 2. Haar-Gauss wavelet hs(x) for q=5s (a) and for q=2,5s (b) 
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When the extending parameter q approaches 
the scaling parameter s, then both peaks of Haar-
Gauss wavelet approach each other. Finally, when 
q=s, the double-peak wavelet goes into a single-
peak wavelet (Fig. 3a), resembles a "Mexican hat" 
wavelet. The double-peak wavelet can be useful for 
detecting (detecting) single and double edges.  
At first this article proposes the detection of a single 
edge using a single-peak wavelet (q=s) shown in 
Fig. 3a. Although, the Haar-Gaussian wavelet for 

q=s is not exactly the same as the "Mexican hat" 
wavelet, however, both functions share common 
features - a single peak with two side humps as 
shown in Fig. 3a. 

The Haar-Gauss integral wavelet transform 
W{g(x)} of the g(x) signal in space x is defined as (9): 

( ) 


−

  − 
=     

  
 s

x
W g x h g( )d

s
 (9) 

 

 
Fig. 3. Haar-Gauss wavelet hs(x) for q=s (a) and Fourier spectrum Hh() (b)

Correspondingly, the Haar-Gauss integral wavelet transform (H-G) in the frequency domain W{g()} (in 
Fourier space) is defined as (10): 

( )  ( ) ( ) ( )


−
 =      W g H G exp i2 d  (10) 

where: H() i G() – respectively Fourier transforms of Haar-Gauss wavelet and g(x) signal.
The H-G wavelet is illustrated in both x space 

(Fig. 3a) and  frequency space (Fig. 3b). Equation 
(10) indicates that the H-G wavelet transform 
behaves like a filter. Its non-zero area becomes  

a wavelet frequency window. The width of the 
spatial Haar-Gauss wavelet window ΔSh is 
described by (11):  
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Substituting the Haar-Gauss wavelet hs(x) (8) to (11), an equivalent edge width ΔSh is obtained (12): 
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When the parameter extending the H-G 
wavelet is large (q»1), then the edge width ΔSh in x 
space approximately is obtained (13). 

 =hS 2sq  (13) 

The Fourier transform of Haar-Gauss wavelet 
described (8) is (14): 

( ) ( ) −   =−    
2( s )

hH s sin 2 sg e  (14) 

For q=s the Fourier transform of H-G wavelet is 
illustrated on Fig.3b. First maximum of Hh() is 
approximately in point c (15): 

 =c

1

4sq
 (15) 

Thus c can be considered as the center 
frequency of the Fourier spectrum of the Haar-
Gauss wavelet. The window bandwidth Wh in the 
mid-frequency domain is (16): 

 =h

1
W

2sq
 (16) 

Then the curl factor is (17): 

  =h hS W 1  (17) 

The H-G wavelet transform is a smoothing 
procedure. The smaller is the width Sh, the wider 
the frequency window Wh. Accordingly, the set of 
collected frequencies is more resourceful. On the 
other hand, the noise band (especially white noise) 
is very wide, which means that more noise is 
collected when the frequency window expands 
(which increases the measurement error). The 
appropriate bandwidth for specific detection 
should be chosen. The ratio of the central 
frequency c to the width of the window Wh, is a 
parameter of measurement precision Q, and is 
equal to (18): 


= =


c

h

1
Q

W 2
 (18) 

The precision parameter Q is therefore 
independent of the center frequency. The 
frequency window expands as the central 
frequency increases. Because the measurement 
accuracy is proportional to Q, it means that using 
the H-G wavelet transform the same accuracy is 
obtained for different spatial frequencies. 

For practical applications, the H-G wavelet 
transform can be considered as a filter in the 
frequency domain. The edge understood as part of 
the image has a limited number of frequency 
components. In practice, the filter width can be 
selected to be slightly wider than the edge 
spectrum bandwidth. 

In this way, the basic frequency components of 
the signal will be collected, while the unnecessary 
components and noise will be filtered out. 
Consequently, the S/N ratio will increase and errors 
will decrease significantly. 

According to the uncertainty principle, the edge 
bandwidth W is directly proportional to the edge 
slope k0. Therefore, the value of the edge width 
measurement could estimate by measuring k0. 
Correct selection of the bandwidth W of the H-G 
wavelet width window can both secure the 
measurement accuracy and also significantly save 
calculation time. The described selection method 
can be understood as a bandwidth matching 
algorithm. 

The ratio of edge bandwidth Wh to frequency 
bandwidth W can be considered as a matching 
parameter . By using equations (7) and (16) can 
obtain (19): 

   
= = = =

 

h

h 0

W S a

W S qk 2sq
 (19) 

According to the band matching algorithm, the 
result sq of the H-G wavelet is determined by the 
bandwidth of the edge W. The Haar-Gauss 
wavelet transform W{f(x)} of edge function f(x) is 
(20):  



Wavelet method of edge detection in images with high-noise level 

 124 

( )  ( ) ( ) ( )
− +   

− − −    
    

−

 
 =       =
 +
 



2 2
0 0x x x x

h 2 2

2as
W f x H F exp i2 d e e

s
 (20) 

where: 

  
= + =

 
02 2
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Fig. 4. Haar-Gauss integral wavelet transform W{f(x)} of edge function f(x) for chosen matching parameters  

Figure 4 illustrates the Haar-Gauss integral 
wavelet transform W{f(x)} of edge function f(x) 
(results of the (20) equation) for four cases of 
matching parameters  = 0.5, 1, 2, 10. It can be 
seen that the zero point indicates the geometry 
position of edge (Fig. 1a), which it means the 
central point of edge function f(x) (Fig. 1b). 

3. CHARACTERISTIC FEATURES OF OBJECTS IN THE 
IMAGE SPACE 

The contours of objects are very often used in 
image recognition using their characteristic 
features (both their shape factors as well as 
geometrical and central moments). 

Among the many known shape factors, the 
group constituting the basic of traditional 
recognition methods can be mentioned. A popular 
designation for these methods is the use of the 
letter W along with the method number. The most 
popular shape factors are W1, W2, and W3. There 
are more advanced W5 or W6 factors that refer to 
complex features. 

The two groups of characteristics presented 
above can be used together or only some factors 

can be selected, deciding either for a more 
accurate reproduction of the shape of objects or 
for faster operation of the algorithm. 

Sometimes intermediate features are useful 
(W7, W8). These are: W7 coefficient, examining the 
variability of the minimum and maximum distance 
of the center of gravity from the contour of the 
object, and W8 coefficient giving the ratio of the 
maximum size to the perimeter of the object. The 
basic coefficients are presented in Table 1. 

In most technical problems, where objects on 
the raster are large enough so that their shapes can 
be accurately evaluated - the values of these 
coefficients allow for convenient and reliable 
distinction of objects of different shapes. What's 
more, each of the discussed coefficients is a scalar 
measure of the described shape - calculating the 
values of these coefficients allows for a marginal 
reduction in the amount of information contained 
in the image. From tens of thousands of numbers 
describing the image in terms of pixels, the 
equivalent vector of characteristics features is 
created. Based on its value, the shape of the object 
can easily determine. 
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Table 1. Shape factors 

circularity ratio 
S

W1 2=


 

circularity ratio 
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Lp1 coefficient 
min
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r
W7

R
=  

Lp2 coefficient max
L

W8
L

=  

Mz coefficient 
2 S

W9
L


=  

 

where: 
L - object projection perimeter, 
S - field of the object projection, 
R - distance of the field element from the object's center of 

gravity, 

l - minimum distance of element from the object's contour, 
d - distance of the pixels of the object’s contour from its 

center of gravity, 
n - number of contour points, 
rmin - minimum contour distance from the center of gravity, 
Rmax - maximum contour distance from the center of gravity, 
Lmax - maximum size of the object. 

 
However, the operation of these coefficients is 

not perfect even for ideal geometric figures, 
because they often take similar values for different 
figures, have varying sensitivity to changes in the 
proportion of the figure, and they are prone to 
discretization errors in varying degrees. 

GEOMETRICAL MOMENTS 

The function f(x,y) means the intensity 
distribution in the image. Individual pixels are 
assigned values in accordance with the function 
value f(x,y), where x,y are the coordinates of the 
pixel.  

In the general case, the two-dimensional 
moment p,q of the row calculated for a function 
f(x,y) is defined as (21): 

( )p q
pqm x y f x,y dxdy

 

−−

=    (21) 

where: x,y - pixel position, while its value is 
described by the function f(x,y). 

For digital images, the function is (22): 

p q
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R

m x y=  (22) 

where: R - describes the area of the figure being 
examined. 

The basic geometrical moments of the row mik 
are defined as (23): 
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There are a number of momentary invariants 
expressed in the form of simple polynomial 
functions operating on values of central moments. 
These invariants are characterized by invariance 
due to the transformation of rotation in the image 
plane, scale changes and shifts. The two most of 
typical transformations are invariants Φ1 and Φ7. 

INVARIANTS AND NORMALIZED CENTRAL MOMENTS 

The normalized central moments pq and 
invariants Φ are defined as (24): 

pq
pq 1

00m+


 =  (24) 
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All of the above parameters are invariant due to 
rotation, translation and the scale change of the 
object. Based on them, a feature vector is created 
that characterizes the uniquely recognized object. 

OBJECT LOCALIZATION 

The location of the object usually comes down 
to determining the coordinates of its center of 
gravity, which is a fairly simple procedure that can 
be performed in a very short time. The method of 
calculating the center of gravity and the orientation 
of objects in the image begins with the description 

of the contour lines of the considered object in the 
form of a set of coordinate pairs of subsequent 
contour points (x1,y1), (x2,y2), …, (xn,yn). Then the 
values of its above described geometric 
characteristics can search using numerical formulas 
in the form: 

− Surface area (25): 
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2
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− Static moments (26) and (27): 
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− Gravity factors (28): 

y x
0 0

S S
x ; y

F F
= =   (28) 

A more complex task is to determine the 
orientation of the object separated in the image 
(considered as a flat figure). The solution of this task 
is possible, among others, using geometrical 
characteristics used in mechanics to describe the 

dynamics of a rigid material system. These are 
mainly calculated tensor elements (assuming that 
the object is a homogeneous flat figure D) as 
follows (29) and (30):  

2 2
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x0y0 xy 0 0J J Fx y= −  (30) 

The components are calculated as follows. 
− Moment of inertia (31) and (32):  

( )( )
n

3 2 2 3
x k k+1 k k k+1 k k+1 k+1

k=1

1
J x x y y y y y y

12
= − + + +  (31) 

( )( )
n

3 2 2 3
y k k+1 k k k+1 k k+1 k+1

k=1

1
J y y x x x x x x

12
= − + + +  (32) 

− Moment of deviation (33): 

( ) ( ) ( )
n

2 2 2 2
xy k k+1 k k k+1 k k+1 k+1 k k k k+1

k=1

1
J x x x 3y y 2y y x 3y y 2y y

24
 = − + + + + +
   (33) 

 

The coordinates of the center of gravity are 
calculated from (28). 

Based on the above-mentioned parameters, 
further characteristics can be calculated. The main 
central moments of inertia (34): 

( )
2x0 y0

0 y0 x0 x0y0

J J 1
J J J 4J

2 2


+
= + − +  

( )
2x0 y0

0 y0 x0 x0y0

J J 1
J J J 4J

2 2


+
= − − +  

(34) 

In order to find indicators determining the 
spatial orientation of the object, the directions of 
the main central inertia axes should be determined 
as (35): 

x0y0
0

y0 0

x0y0
0

y0 0

J
arctg

J J

J
arctg

J J









 =
−

 =
−

 (35) 

Knowing the angles given in (35), the 
orientations of the observed object, according to 
the axis of inertia of the solid can be determined. 

4. RESULTS OF TESTS 
Figure 5 shows the simulated function of the 

real edge f(x) in grayscale (dashed line) and its Haar-
Gauss integral wavelet transform W{f(x)+B} (solid 
line). The Haar-Gauss wavelet transform is an 
integral W{f(x)+B} = W{f(x)}. 

The Fourier spectrum of the edge function f(x) in 
grayscale and the spectrum of its wavelet 
transform H-G is illustrated by dashed and solid 
lines, respectively. The H-G wavelet bandwidth was 
taken as three times from the corresponding edge 
bandwidth ( = 3). 

To obtain the data illustrated in Figure 5, first the 
gray scale of the edge function f(x)+B using a Haar-
Gauss wavelet with an arbitrary bandwidth to 
obtain an approximate midpoint (with maximum 
slope) of the edge curve should convert. 

After calculating the slope at this point k0 and 
setting , the wavelet bandwidth from equation 
(19) can be chosen. Then, the gray edge curve is 
transformed again using the H-G wavelet with the 
selected bandwidth. The zero point now indicates 
the exact edge location. Since the bandwidths of 
the H-G wavelet follow the bandwidths of the edge 
function, similar accuracies is obtained for different 
defocusing conditions. 

The maximum error is small (0.22%) and the 
average error is also small (0.075 %). This means 
that correct results can be obtained at large 
defocusing distances and that the edge of a large 
object can be detected with high accuracy. 

Single edge detection was carried out using the 
integral transform with Haar-Gauss wavelet in the 
domain of x space and frequency . Since the 
proposed Haar-Gauss wavelet transform at q=s is 
similar to a wavelet transform with a "Mexican hat" 
wavelet, this suggests that a function of "Mexican hat" 
type can also be used in the same procedure.  
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Fig. 5. The Haar-Gauss wavelet transform of real edge f(x) and its Fourier spectrum H() for small (a, b) and 
large (c, d) edge width (D=) 

For double edge detection (Fig. 6), a Haar-Gauss integral wavelet transform with double peaks can also 
be used, which can detect edges in one step by setting the distance between two peaks. In Figure 6 the 
double edge intensity function (solid line) and its corresponding Haar-Gauss wavelet transform was 
simulated. 

 
Fig. 6. Double edge intensity function (solid line) and its Haar-Gauss integral wavelet transform (broken line)

CONCLUSIONS 
A mathematical model of a non-sharp edge and 

a bandwidth matching algorithm have been 
proposed such that the H-G wavelet bandwidth 
follows the edge frequency bandwidth in order to 
obtain a large depth of field, high detection 
precision and fast numerical calculations. The 
proposed Haar-Gauss wavelet transform and the 
wavelet bandwidth matching algorithm can be an 
important tool for edge detection in transport 
vision systems with large depth of field. 

ABBREVIATIONS 
1. DOF – depth of field; 
2. H-G – Haar-Gauss wavelet transform; 
3. UF – uncerta intyfactor. 
 

METODA FALKOWA DETEKCJI KRAWĘDZI 
W OBRAZACH O WYSOKIM POZIOMIE SZUMÓW 

W artykule zaproponowano model matematyczny nieostrej 
krawędzi oraz całkową transformatę z falka Haara-Gaussa 
wraz z algorytmem dopasowania pasma zarówno  
w przestrzeni x jak i w dziedzinie częstotliwości. Zilustrowano 
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detekcję pojedynczej i podwójnej krawędzi wykorzystując 
całkową transformatę Haara-Gaussa. Proponowany model 
krawędzi wraz z transformatą falkową i algorytmem 
dopasowania szerokości pasma częstotliwości falki może być 
ważnym narzędziem w rozpoznawaniu obiektów przez 
nowoczesne wizyjne systemy transportowe. 

Słowa kluczowe: transformata falkowa, detekcja krawędzi, 
cechy charakterystyczne, falka Haara-Gaussa 
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