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Abstract   The article presents the concept of using an artificial neural network to approximate the parameters describing 
the vehicle braking process, from the point of view of the application of this method in the diagnostics of the braking 
system. The artificial neural network of non-linear autoregression was used to approximate the dependence of the braking 
deceleration and the pressure in the braking system. The effectiveness of the neural network was checked depending on 
the number of neurons in its hidden layer and on the applied learning algorithm. The operation of the neural network was 
verified based on the actual braking processes of the Skoda Octavia, carried out with different dynamics, with different car 
weights and different tire inflation pressures. After verifying the neural network, it was used to approximate the braking 
deceleration values for the pressure values exceeding those present in the input data set. This action allows the analysis of 
the possibility of the vehicle obtaining a braking deceleration, which qualifies its braking system as efficient. Two concepts 
of using a neural network to solve this problem were analyzed. Conclusions related to the validity of the development of 
the discussed methods were drawn. 
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INTRODUCTION 

Diagnostics of the hydraulic braking system of 
the motor vehicle as a whole is not covered by 
modern on-board diagnostic systems. Only the 
mechatronic part of this system is controlled. In 
many modern vehicles, the mechatronic part consists 
of ABS / ESP systems, which are the so-called pending 
systems, i.e. systems operating periodically during 
the operation of the braking system. ABS / ESP 
systems are tested for electrical efficiency in the 
on-board diagnostic systems. The increasingly 
common hybrid and electric vehicles feature 
mechatronically controlled braking systems. In these 
systems, the controller, operating in the feedback 
loop, is responsible for the implementation of the 
current braking processes. In the on-board diagnostic 
systems of these systems, there is no control of the 

condition of their hydraulic and mechanical parts. 
The electrical efficiency of sensors and actuators is 
checked. Slight deterioration of braking efficiency 
in relation to technical efficiency, which may be 
a significant factor in emergency braking situations, 
is not signaled. At the same time, the development 
of the accuracy of the mechatronic control of the 
braking system means that slight weakening of the 
braking operation increasingly affects the effectiveness 
of the control algorithms implementation. 

The operational processes of car braking are 
often short-term and gentle processes, with 
a change in the braking pressure to a limited extent. 
Therefore, the precise method of approximating 
the course of the dependence of the quantity 
constituting the braking excitation on the quantity 
constituting the response to this excitation will 
allow to increase the accuracy of diagnostics and to 
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assess how the braking system would behave in its 
current state in emergency situations. Due to this 
fact, an attempt at such an approximation with the 
use of an artificial neural network was made in the 
paper. On the basis of the quantities describing the 
braking process of a vehicle with a braking system 
with a specific technical condition, it is possible to 
train the neural network so that it recognizes the 
response of the braking system in this technical 
condition to new values of inputs that do not occur 
in a given braking process. The resulting extension of 
diagnostic information contributes to the uniqueness 
of the assessment of the technical condition. The 
algorithm of this assessment is the next step, after 
the approximation presented in the paper, in the 
formulation of the diagnostic brake system monitor, 
using the artificial intelligence. 

1. LITERATURE BACKGROUND 

The conducted analysis of the current state of 
knowledge allows us to conclude that neural networks 
are successfully used in the diagnosis of various 
technical objects and machine parts. An example is 
a gas turbine [8]. In work [8], machine learning 
algorithms and multi-layer, connected neural networks 
were used to predict the output pressure level 
from the compressor and predict its failures. Direct 
measurement of the outlet pressure is an expensive 
measurement due to the location of the sensor. 
This fact proves the undoubted advantage of the 
application of the discussed methods, which allow 
for its prediction on the basis of the values of the 
turbine operating parameters, the measurement of 
which is less difficult. 

The vibration process is a phenomenon whose 
changes during the operation of various objects are 
symptoms of failures and wear. It was analyzed in 
[9-11]. The work [9] covers the problems of recognizing 
the type and determining the degree of operational 
damage to the gear transmission. These are, among 
others tooth breakage or fracture of the tooth foot. 
An analysis of statistical features of vibration 
waveforms was carried out with the use of a self-
organizing Kohonen neural network and a multilayer 
perceptron. The paper [10] also deals with the problem 
of gears diagnostics, however, the possibilities of 
detecting chipping fatigue wear (the so-called pitting) 
were analyzed. For this purpose, the proprietary 
concept of an algorithm for the analysis of the raw 
acoustic emission signal was proposed. This 
algorithm used a one-dimensional convolutional 
neural network with an unsupervised learning 
algorithm. This algorithm used a sparse auto-encoder. 
The advantage resulting from the discussed method is 

the fact of automatic extraction of the characteristics 
of acoustic emission signals, indicating the occurrence 
of breaking wear, without the need to convert the 
signal to the frequency and time domain.  

The work [11] uses the analysis of vibration signals 
to evaluate the valve clearance in the internal 
combustion engine of a motor vehicle. A three-axis 
acceleration sensor was used, mounted on the 
engine head. Measurement tests included engine 
operation at various rotational speeds and various 
loads. The vibration signals were parameterized. 
Three diagnostic models were used - the neural 
classifier, using the binary tree model, the k-nearest 
neighbors method and the unidirectional neural-
multilayer perceptron. It had 3 outputs corresponding 
to the classification of the valve clearance as too 
small, optimal and too large. The best efficiency 
was ensured by the binary tree model, which was 
a  combination of 3 trees that were specialized in 
the assessment of each of the three discussed valve 
clearance states. 

A common feature of the technical objects used 
in the works discussed above is the fact that 
diagnostic symptoms manifest themselves in the 
form of changes in physical quantities, which are 
quantities that can be registered with the use of 
sensors generating electrical signals. The analysis of 
the diagnostic applications of artificial intelligence 
methods allows for the formulation of the main 
advantages of their application. They are: - it is not 
necessary to define the physical laws linking the 
defect with the corresponding change in the 
operating parameters of the facility, - no need to 
formulate a diagnosis by a service technician or 
diagnostician. The significance of the first of the 
presented advantages is visible in situations where 
it is not possible to determine the physical law 
linking the fault with the parameters of the device. 
This applies, for example, to a situation where 
changes in the geometrical features of a given 
object occur, due to cracks, the nature of which is 
different in different copies of a given object. In 
turn, the second of the mentioned advantages 
allows for the development of a diagnostic monitor, 
operating in real time, during the operation of the 
technical facility. The issue of developing such 
a diagnostic monitor for the vehicle braking system 
is particularly important due to its application in 
autonomous vehicles. 

The analysis of works related to the use of 
artificial neural networks to solve problems similar 
to those presented by the author confirms the 
legitimacy of the attempt to use them to 
approximate the values describing the braking 
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process of the vehicle in order to increase the 
effectiveness of the brake system diagnostics. In 
the work [1], a multilayer neural network with 
feedback was used to solve the optimization task. 
It consisted in determining the values of the 
braking moments of the vehicle wheels, which 
allow to ensure its stability during the maneuver of 
changing lanes from the surface with greater 
adhesion to the less grippy surface. A tree-structured 
vehicle model was formulated, consisting of 
elements with a certain number of degrees of 
freedom. The flexibility of the tire and suspension 
is reduced to the point of contact between the 
wheel and the road. The forces at this point were 
determined using the Duugoff-Uffelman model. 
The solution of the formulated task, carried out by 
means of a genetic algorithm, turned out to be too 
time-consuming to be used in the current control. 
However, the results of this algorithm were used as 
a training set for the neural network. This allowed 
for a reduction in the computation time. The 
computational methodology was verified by 
analyzing the displacement of the center of mass of 
the vehicle during a lane change, with the use of 
the determined braking torque values. The 
effectiveness of the artificial neural network was 
assessed as sufficient with the use of adequately 
accurate training data. In [2], the concept discussed 
in the previous work was applied to ensure the 
stability of emergency maneuvers of a multi-unit 
vehicle. A multilayer and radial neural network was 
used. Various methods of teaching the neural 
network were tested, with the Levenberg-
Marquardt method being the most effective of 
them. Another application of the artificial neural 
network, related to the operation of the vehicle 
braking system, is presented in [3]. The artificial neural 
network was integrated with the proportional-integral 
controller in order to improve the effectiveness of 
the anti-lock braking system ABS. The neural 
network was used to determine the parameters of 
the proportional-integral controller. When the 
neural network was learned with the use of data 
related to various types of pavement, it ensured 
the effectiveness of the ABS controller in a wide 
range of road conditions. 

In the work [4], the vibrations of wheels on the 
balancing stand were analyzed. The neural network 
compares them with the reference values, which 
allows the technical condition of the wheel rims to 
be assessed. Thus, data classification is made. This 
action was carried out by the author in [5]. A neural 
network was formulated, which mapped the 
model data (vehicle acceleration in three axes, 

wheel slip) on the basis of data obtained in the 
current processes of braking and acceleration of 
the vehicle. Model data came from the discussed 
road tests, carried out in winter conditions, with 
the use of winter tires with the appropriate 
inflation pressure. On the other hand, the data on 
the basis of which the model data was attempted 
came from road tests analogous to the standard 
road tests, however, carried out with the wrong 
inflation pressure in winter tires and with the use of 
summer tires with different inflation pressures. 
Inadequacy of the tires used together with 
inadequate pumping pressure resulted in the fact 
that the measurement data differed from the 
reference data. The greater the differences, the 
greater the error of the discussed mapping carried 
out by the neural network. Thus, it was possible to 
use the neural mapping error as an active safety 
diagnostic indicator related to the use of a type of 
tire suitable for road conditions with the 
appropriate inflation pressure. Another direction of 
work related to the use of artificial neural networks 
in vehicle diagnostics is the construction of on-
board diagnostics systems, allowing for their 
universal application in various types of motor 
vehicles. This problem was addressed in [6], 
comparing the composition of neural networks of 
different types. Application directions, of particular 
importance nowadays, are the use of neural 
networks in diagnostics of electric propulsion systems 
and in on-board diagnostics of autonomous vehicles. 

2. THE MODEL FORMULATION 

The novelty of this work consists in the use 
network (directly and with the use of a formulated 
calculation loop) of a specific type of neural network 
for a specific application related to the approximation 
of the dependencies of the quantities describing 
the vehicle braking process. As the dependence of 
the response to the imposition of the braking 
process on the quantity that forces this process, the 
dependence of the braking deceleration (response 
to the excitation) on the pressure in the braking 
system (the quantity which forces braking) was 
selected. The paper [7] confirms the possibility of 
its determination in vehicle operation conditions 
and its use for current diagnostics of the braking 
system of a motor vehicle. This relationship directly 
influences the technical condition of the hydraulic 
braking system in the Skoda Octavia research vehicle. 

In the case of vehicles with a mechatronically 
controlled braking system, it is possible to apply the 
approximation methodology formulated in the work, 
using an artificial neural network. However, it is 
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necessary to replace the used dependence of the 
braking deceleration on the pressure in the braking 
system with another dependence, linking the 
imposition of the braking process with the response 

to this excitation. The choice of this dependence 
should result from the design of the mechatronically 
controlled braking system, which differs depending 
on the vehicle model. 

 
Fig. 1. Schematic representation of the used neural network   

The above figure shows a diagram of the neural 
network used to approximate the course of the 
braking deceleration as a function of the pressure 
in the braking system. It is a two-layer network with 
a sigmoidal function of activating neurons in the 
hidden layer and a linear function of activating neurons 
in the output layer. The neural network maps the 
next pressure deceleration dependency point on 
the basis of the two previous points of this relationship. 
After it is mapped, the neural network maps the 
next data point using the data point resulting from 
the neural mapping in the previous step and the 
data point before it. This operation is performed for 
the entirety of the input data, so when, for example, 
we use a 100-point set as input, the neural network 
will return 98 points as approximation results, 
comparable with the reference input data. The input 
data was randomly divided into training, validation 
and test sets. After the learning process, the neural 
network was used to map the braking deceleration 
for new pressure values in the braking system, not 
present in the input data set. The analysis of the 
effectiveness of approximation of the deceleration-
pressure relationship was carried out on the basis 
of the following research braking processes: 
- process 1: Initial braking speed 50 km/h, additional 

test vehicle load 300 kg, tire inflation pressure 
1.5 bar, intention to brake softly  

- process 2: Initial braking speed 30 km/h, additional 
test vehicle load 300 kg, tire inflation pressure 
1.5 bar, intention to brake softly 

- process 3: Initial braking speed 30 km/h, no 
additional load on the test vehicle, wheel pumping 
pressure 2.0 bar, intention to intensive braking  

- process 4: Initial braking speed 50 km/h, no 
additional load on the test vehicle, wheel pumping 
pressure 1.5 bar, intention of moderate-intensity 
braking, mileage with a defect introduced - 
brake fluid leakage in one of the brake circuits. 

The test braking runs differed in conditions 
related to the condition of the vehicle. The lower 
pumping pressure of the wheels reduced the 
effects of the braking process forced by the driver. 
In turn, the increased load of the vehicle increased 
the drag force of its inertia. Increasing the initial 
braking speed increased the air resistance force 
acting on the braked vehicle. Thus, the conditions 
of reduced initial braking speed, low vehicle load 
and increased wheel pumping pressure were the 
conditions enhancing the effects of specific braking 
dynamics and thus causing a faster change in vehicle 
braking deceleration. Thus, they were conditions 
that increased the difficulty of approximating the 
deceleration-pressure relationship by a neural 
network using as the input data set the quantities 
derived from the braking processes with rapidly 
changing deceleration. In each of the runs, the 
pressure in the brake system was measured using 
a strain gauge system placed on the brake hoses 
and the linear speed of the car was measured using 
the Correvit optical head. The car speed signal was 
differentiated to obtain a braking deceleration. 

 

a)  
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b)  
 

c)  
 

d)  

Fig. 2. Time courses of the input data to the neural 
network and the data used for its verification 
in individual test  braking runs: a) run 1, b) run 2, 
c) run 3, d) run 4  

 

The above graphs show the time dependencies 
of the pressure in the brake system in the braking 
waveforms of the test vehicle used for the analysis. 
They were courses that differed in their conditions, 
including the dynamics of the temporal change of 
pressure in the braking system. The course shown 

in Figure 2 d is the braking course carried out with the 
defect - the braking pressure was limited to a value 
of a few bars in one of the circuits of the dual-circuit 
braking system of the test vehicle. The data shown 
in the above graphs were recorded with a time step of 
0.02 seconds. The red lines on the graphs distinguish 
the input data for the neural network (on the left 
side of the red lines) and the data on the basis of 
which the mapping of the vehicle deceleration 
value was verified through the neural network (on 
the right side of the red lines). The data on the left-
hand side of the red lines has been randomized into 
the training, validation, and test dataset in 
a  70/15/15 ratio. The neural network, on the basis 
of the discussed input data, maps the braking 
deceleration values for the pressure values on the 
right sides of the red lines. They are then compared 
with the Deceleration Pattern values (to the right of 
the red lines). Contrary to the nonlinear autoregression 
methods, we do not program the time change of 
the input quantities (pressures and corresponding 
deceleration values). However, due to the fact that 
the data reading frequency (50 Hz) is constant, it is 
included in the input data used, both the input and 
the pressure values for which the neural network 
maps the deceleration. The effect of a more intense 
change in time of data manifests itself in an increased 
dispersion of the measurement results, which 
results from the limited frequency of data readings 
by the measuring equipment. The greater dispersion 
of the measurement data, on the basis of which we 
enter the data for the neural network, deteriorates 
the unequivocal nature of the dependence of the 
braking deceleration on the pressure in the braking 
system, causing the increase in the difficulty of the 
neural network in mapping the braking deceleration 
value. 

 

a)  
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b)  
 

c)  
 

d)  
 

e)  

 

f)  

Fig. 3. Results of the neural mapping of the 
deceleration for the test inhibition 1 run:  
a) Bayes regularization, 2 neurons in the hidden 
layer, b) Bayes regularization, 5 neurons in 
the hidden layer, c) Bayes regularization, 
10  neurons in the hidden layer, d) Algorithm 
Levenberg- Marquardt, 2 neurons in the hidden 
layer, e) Levenberg-Marquardt algorithm, 
5  neurons in the hidden layer, f) Levenberg-
Marquardt algorithm, 10 neurons in the 
hidden layer 

On the basis of the test braking process No. 1, 
which was characterized by the most established 
character of the increase in the deceleration value 
with the increase in the braking pressure (Fig. 2), 
the operation of the used neural network was 
verified with different numbers of neurons in the 
hidden layer and with the use of various network 
learning algorithms. The analyzed numbers of neurons 
in the hidden layer are 5 and 10. The Levenberg-
Marquardt network learning algorithm and the 
Bayes Regularization algorithm were tested. The 
results of the neural mapping in each case along 
with the model deceleration values are shown in 
Figure 3. The input data in each case were the values 
of the brake system pressure and the car deceleration, 
located on the left side of the red line in diagram 
2 a. On the other hand, the pressure values for 
which the neural network was to map the 
deceleration values (blue waveforms in Figure 3) are 
the pressure values presented on the right-hand 
side of the red line in diagram 2 a. The dependence 
of the braking deceleration on the pressure in the 
braking system, taking into account the deceleration 
values mapped by the operation of the neural 
network, in each of the cases shown in Figure 3 is 
characterized by a minimized dispersion in relation 
to the standard pressure-deceleration relationship. 
The values obtained by the neural mapping have 
a  smaller dispersion than the test results that were 
used to verify the neural mapping process. The 
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unambiguousness of the deceleration-pressure 
relationship is, from the point of view of brake 
diagnostics, an advantage of using an artificial 
neural network for its approximation. It favors the 
uniqueness of the diagnostic process. In order to 
compare the efficiency of the neural network in 
each of the cases presented in Figure 2, the values 
of the average error of the neural mapping were 
calculated, given by the formula: 

σ = 
|areference - aobtained|

max (areference, aobtained)
 (1) 

where: σ- relative error of the neural mapping, - 
areference - reference value of the braked 
deceleration of the car, - aobtained - value of 
braking deceleration of the car, resulting 
from the neural mapping. 

 

The arithmetic mean values of the neural mapping 
error for each of the cases shown in Figure 2 were 
analyzed. The smallest value of the mean error of 
the neural mapping occurs for the course presented 
in Figure 3 b. It is approximately 0.17. All cases of 
applying the Bayesian Regularization algorithm are 
characterized by average neural mapping error 
values that are smaller compared to the waveforms 
using the Levenberq-Marquardt algorithm. For the 
waveforms presented in Figure 2 a and 2 c, they are 
respectively 0.17563 and 0.17628. The mean 
values of the neural mapping error in the case of 
the Levenberq-Marquardt algorithm are for the 
cases shown in Figure 2 c, 2 d and 2 e, respectively, 
0.18252, 0.19169 and 0.19971. Thus, when this 
algorithm is used, increasing the number of neurons 
in the hidden layer causes a deterioration in the 
accuracy of the neural mapping. The use of 2 neurons 
in the hidden layer brought the most favorable 
results and as the number of neurons in the hidden 
layer increased, the neural network lost the ability 
to generalize, which resulted in a deterioration of 
the effectiveness of its operation. In the case of 
using the Bayesian Regularization algorithm, the 
differences in the mean value of the neural 
mapping error between individual cases are much 
smaller, which confirms the smaller impact of the 
number of neurons in the hidden layer on the 
effectiveness of the neural mapping of the braking 
deceleration value. In this case, the best efficiency 
was achieved for the average of the analyzed 
numbers of neurons in the hidden layer. Thus, it 
was a compromise between ensuring the network's 
generalizability (lower numbers of neurons in the 
hidden layer) and the sensitivity of the network to 
specific cases of training data compilation (greater 
numbers of neurons in the hidden layer). 

 

a)  
 

b)  
 

c)  
 

Fig. 4. Results of mapping the neural deceleration with 
the use of Bayesian regularization and 5 neurons 
in the hidden layer: a) inhibition waveform 2, b) 
inhibition waveform 3, c)  inhibition waveform 4 

The number of neurons and the neural network 
training algorithm, which ensured the greatest 
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efficiency of its operation, were used to map the 
deceleration values for the subsequent analyzed 
braking processes. The results of the analysis are 
shown in Figure 4. For each run, the input and output 
values shown in Figure 2 were used, in accordance 
with the previously discussed methodology for the 
runs shown in Figure 3. Braking processes characterized 
by greater irregularities and greater dynamics 
result in much greater requirements for a neural 
network. For the shortest and most dynamic braking 
process – process 3- the average value of the neural 
mapping error is the highest and amounts to 
approximately 0.6. In the case of the braking 
process with the introduced defect - loss of brake 
fluid - for pressure values up to about 1 second, the 
accuracy of reproducing the deceleration is 
significantly higher than for the rest of the process 
(Fig. 4 c). This fact is caused by a slight variation of 
pressure up to about 1 second and its more rapid 
changes after exceeding this time. The braking 
process, for which the results of the deceleration 
mapping are shown in Figure 4 b, is characterized by 
the regular nature of changes in the initial pressure 
values, for which the neural network mapped the 
deceleration values. In his case, it is visible that the 
deceleration values for the initial pressure values 
are overestimated, which results from the instability 
of the neural mapping algorithm at the initial 
moment. 

 

 
 

Fig. 5. Test braking process 1- Time deceleration 
and pressure waveforms for the input data 
and the results of neural mapping of the 
deceleration for new pressure values 

The next step of the analysis is to check which 
step of changing the pressure values for which the 
neural network maps the deceleration values will 
ensure the accuracy of this mapping at a sufficient 

level from the point of view of the brake system 
diagnostics. In order to illustrate this task, the 
effectiveness of mapping the deceleration values 
for pressures greater than the largest value 
contained in the set used as input set (derived from 
the real braking course) and increasing with a step 
of 0.48 bar per 0.02 seconds was checked. The 
value of the pressure increase step determines the 
size of the output data, which, apart from the rapid 
change in pressure, also affects the effectiveness of 
the braking deceleration approximation. When the 
amount of output data is greater, the efficiency 
decreases. The input and output data are located 
on the left and right sides of the green line in Figure 5, 
respectively. Advantageous for diagnostics (ensuring 
its uniqueness) is the fact of the established character 
of the mapped braking deceleration, which is the 
result of the fixed (linear) nature of the pressure 
change, for which the discussed values are 
decelerations have been mapped. 

 

a)  
 

b)  
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c)  
 

Fig. 6. Dependencies of braking deceleration on the 
pressure in the braking system, related to the 
verification of the neural network operation 
presented in the previous figure: a) for input 
data, b) for output data, c) comparison of the 
deceleration-pressure relationship, which are 
the results of the input data approximation 
and output 

In order to verify the effectiveness of the network, 
in the case shown in Figure 5, a comparison was 
made of the dependence of the braking deceleration 
on the pressure in the brake system, which were 
created with the use of 2nd degree approximation 
polynomials, which approximate the input data 
(Fig. 6 a) and the output data (Fig. 6 b). These 
polynomials were used to calculate the deceleration 
value for pressures from 1 to 100 bar. The results 
of these calculations are shown in Figure 6 c. The 
green line marks the data obtained using the 
approximation polynomial of the neural mapping 
results, while the red line shows the calculations 
using the polynomial approximating the input data 
for the neural network. The more precise the 
neural mapping is the more the waveforms of both 
polynomials overlap. Due to this fact, in Figure 6 c the 
area of increased accuracy of the neural mapping is 
observed from the initial values of the braking 
pressure to about 35 bar. It results from the fact that 
it is a pressure range close to the pressure range 
included in the input data for the neural network.  

The fact of the increased accuracy of the neural 
mapping of the deceleration values for the input 
pressure values that differ slightly from the input 
values was used to attempt to improve the 
efficiency of the formulated neural network. Its 
efficiency was checked in mapping the deceleration 
values for input pressures, increased linearly by 
0.01 bar for each successive element of the output 
data set (pressure values for which the network 

represented the braking deceleration values). 
However, in view of the discussed steps of changing 
the output pressures, their 100-element set is 
characterized by a pressure change of 1 bar. From 
the point of view of the diagnostics of the brake 
system, it is advantageous for the neural network 
to represent the deceleration values for a wide range 
of pressures - for example from initial values to 100 
bar. In the case of the adopted step of increasing 
the pressure in the output data set (0.01 bar for 
each element), increasing the number of elements 
of the output pressure set so that they cover the 
discussed, exemplary range of diagnostically favorable 
pressures, causes a significant increase in the 
number of elements of the output set in relation to 
the number of elements of the input set. This is 
a  disadvantageous situation from the point of view 
of the effectiveness of the neural network. In order 
to limit it, it has been proposed to use a neural 
network that operates in a computational loop. 

In the first step of its operation, we use as input 
data for the neural network 100 points with the 
values of pressure and the corresponding braking 
deceleration, obtained on the basis of the research 
braking process. As the output set of pressures for 
which the network maps the deceleration values, 
we use 100 values increased with a step of 0.01 bar 
starting from the last pressure value from the input 
set. The deceleration values obtained as a result of 
the operation of the neural network in the 
discussed first loop step are used to create the 
input set for the neural network in the next loop 
step. Then the input set consists of the pressure 
values with the corresponding deceleration values, 
which were the input values in the previous loop 
step (test results) and the output pressure values 
from the previous loop step (100 values increments 
of 0.01 bar) with the corresponding deceleration 
values obtained as a result of the operation of the 
neural network in the previous loop step. The 
pressure output values for which the neural network 
represents the deceleration values in this second 
loop step are again 100 pressure values, increased by 
0.01 bar starting from the last set pressure value for 
this loop step. In accordance with the methodology 
discussed in the example of two steps, subsequent 
loop steps are carried out until the output set 
contains the pressure values for which the braking 
deceleration informs about the extremely intense 
braking efficiency (e.g. 100 bar). The use of loop in 
question is the use of a neural network to build an 
input set for the same network for further steps of 
its operation. Thus, the accuracy of mapping the 
decelerations for new pressures in the next loop 
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step depends on the accuracy of mapping the 
decelerations for the pressures in the previous loop 
step. Using the discussed loop, on the one hand, we 
provide favorable conditions for the neural mapping 
of decelerations (a small difference of output 
pressures from the last pressure value from the 
input set), and on the other hand, we eliminate the 
risk of using the output set, which is much larger 
than the input set. It is the size of the input set that 
increases, while the output set contains 100 data 
points at each step of the loop. Thus, as the 
successive loop steps are performed, the effect of 
the deceleration and pressure values obtained 
from the measurements on the neural network 
mapped decelerations is less and less at the 
expense of the greater and greater effect of the 
deceleration values along with their corresponding 
pressure, which are the output data sets of the 
previous loop execution steps. 

 

a)  
 

b)  
 

Fig. 7. Neural network operation loop for input data 
related to the 1st test braking process: 
a) deceleration and pressure time courses for 
input and output data, b) dependence of the 
deceleration on the braking pressure for 
input and output data 

The figure above shows the results of the operation 
of the previously discussed neural mapping loop on 
the example of the braking process, which was 
characterized by the mildest character among the 
waveforms used for the analysis. 4 steps of loop 
operation have been carried out. Figure 7 a shows 
the time histories of the braking pressure and 
deceleration of the vehicle. The values of the 
pressure in the braking system for the range from 
2 to 10 seconds are the values for which the neural 
network mapped the car decelerations in the 
individual operating loops. The values of the 
deceleration mapped in individual loops were 
shown on the time course of the deceleration also 
in the range from 2 to 10 seconds. According to the 
discussed methodology of creating a loop, the 
results of the previous loop (100 points of 
dependence of the mapped deceleration on the 
given pressure) were added to the input data set 
for the next loop. The low deceleration values at 
the limits of the values for individual loops are 
observed in the time course of the braking 
deceleration. This fact results from the instability - 
the operation of the neural network in the initial 
moments. The fact that the deceleration values 
mapped for the initial pressure values in consecutive 
calculation loops is not much greater than the 
deceleration values mapped for the final pressure 
values in the previous calculation loops (excluding 
the underestimation of decelerations resulting 
from the network instability at the ends of the 
loop). The linear nature of the waveform mapped 
by the deceleration neural network for the linearly 
increased pressure is maintained. Figure 8 b shows 
the dependence of the braking deceleration on the 
pressure in the braking system, which includes the 
data presented in Figure 8 a. For pressures up to 
about 27 bar, it includes the test results used as 
input data for the neural network in the first loop 
of its operation. The rest of it is the dependence 
obtained as a result of the implementation of 
individual loops of neural mapping. The premise 
proving the reality of the deceleration values 
mapped by the neural network is the fact that this 
part does not differ significantly from the simple 
one, constituting a linear approximation of the 
whole deceleration-pressure characteristic. 

 

The neural network, operating in a loop, was also 
used to approximate the deceleration-pressure 
relationship on the basis of the course of braking 
with a defect (significant loss of brake fluid) (Fig. 8). 

The data presentation is analogous to that 
shown in Figure 8. 
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a)  
 

b)  
 

Fig. 8. The use of the neural mapping loop for the 
test braking 4 run: a) deceleration and pressure 
time runs for input and output data,  
b) dependence of the deceleration on the 
braking pressure for input and output data 

The described braking process was characterized 
by greater abruptness compared to the previously 
analyzed braking process. The values of the braking 
pressure, which are the input data from the tests 
(from 0 to 2 seconds in Figure 9 a), reached the 
values up to about 45 bar, while in the previously 
discussed braking process the maximum was about 27 
bar. In view of the conditions of more rapid braking, 
the neural network operating in the loop showed 
worse accuracy of operation compared to its 
application in the previously discussed braking 
process. This fact is evidenced by the differences in 
the slope of the fragments of the time course of the 
deceleration, which are the result of the neural 
mapping in individual loops (Fig. 8 a). The ambiguity 
of the deceleration-pressure relationship (Fig. 8 b) 
in the range from about 42 bar results from the fact 
that most of the pressure values for which the 
deceleration mapping using the neural network 

was requested are smaller than the highest pressure 
value included in the input data for the first 
implemented neural network loop (pressures up to 
2 seconds). Another factor increasing the discussed 
ambiguity of the deceleration-pressure relationship 
is the scatter of test results, caused by the suddenness 
of the braking process. 

An analysis of the possibility of using the discussed 
method of approximation of the deceleration-
pressure relationship to signal weakening of the 
vehicle brakes was carried out. This analysis consisted 
in comparing the results of the linear approximation 
of the deceleration-pressure relationship, which 
was the result of the neural mapping for the course 
with the brake failure (Fig. 9 b) and without failure 
(Fig. 9 a) in the same range of braking pressures. 
The results of the comparison are shown in Figure 9 c. 
If the approximation of the deceleration-pressure 
relationship is correctly sensitive to the weakening 
of the brakes, then the approximation line for the 
failed braking run should be below the approximation 
line for the faultless braking run in Figure 9 c. 

 

a)  
 

b)  
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c)  
 

Fig. 9. Comparison of the results of the operation of 
the neural mapping loop: a) results of the 
operation of individual loops for test braking 1, 
b) results of the operation of the neural 
network in individual loops for the test 
braking 4, c) comparison of the deceleration-
pressure relationship, resulting from the linear 
approximation of the results the operation of 
the neural mapping loop 

This situation occurs for the braking pressure 
range up to about 50 bar, which results from the 
fact that the braking pressure values in this range 
are values that were included in the input data set 
and the output data set for which the neural 
network mapped the deceleration values. Higher 
pressures were not subject to the operation of the 
neural network. Thus, there is a premise to conclude 
that if the operating loop of the neural network 
was conducted for a wider range of pressures, the 
approximation straight line for the deceleration - 
pressure relationship obtained at that time would be 
characterized by a smaller slope. Then, for the most 
part, it would be under the simple approximation 
deceleration-pressure relationship for the brakes in 
the state of technical efficiency. 

CONCLUSIONS 

The analysis carried out in the work allows to draw 
a conclusion about the legitimacy of using an artificial 
neural network to approximate the parameters of 
the braking process in terms of increasing the 
effectiveness of the braking system diagnostics. In 
the case of verification of the neural network, 
representing the braking deceleration values for 
the pressure values coming from the actual braking 
process, the accuracy was achieved at the level of 

20%, when it was requested to map the deceleration 
values for pressures with values not exceeding the 
values of the input pressures and the input data to 
the neural network from in-service braking processes 
with moderate abruptness. This accuracy results 
from the analysis of the value of the defined indicator-
error of the neural mapping. In the case of using 
such step values of the pressure change, for which 
we want to map the deceleration values so that the 
pressure reaches 100 bar while maintaining the 
number of input data equal to the number of output 
data, the situation dramatically worsens. The accuracy 
of the neural mapping of the deceleration values is 
so small that the obtained deceleration-pressure 
relationship is not suitable for use in the diagnostics 
of the braking system. Hence, a loop-based neural 
network was used, the accuracy of which is promising. 

 

The possibility of introducing linearly increasing 
pressure values for which it is desired to represent 
the deceleration value is an advantageous issue 
from the point of view of brake system diagnostics. 
Under these conditions, the neural network returns 
deceleration values that are also close to linear. 
Thus, the linearity of the deceleration-pressure 
characteristic obtained favors the unambiguity of 
its comparison with the reference characteristics 
and the uniqueness of the assessment of the 
technical condition of the brakes on this basis. 

 

There are a number of activities that must be 
carried out in order to formulate a comprehensive 
solution for a diagnostic brake system monitor, 
using the approximation application of an artificial 
neural network formulated in the paper. It is necessary 
to conduct a wide range of experimental tests that 
will allow formulation of the conditions that should 
be characterized by the braking process so that the 
approximation of the braking process parameters 
on its basis would allow for the diagnostics of the 
braking system with the appropriate accuracy. It is 
necessary to formulate a methodology for determining 
the parameters of the braking process, related to 
road conditions and the condition of the vehicle 
(including its weight). These parameters should be 
taken into account when assessing the technical 
condition of the braking system. In order to do this, 
a classifier should be formulated, assigning the 
dependencies between the extortion of the braking 
system and the response to the excitation to 
specific states and faults of the braking system. It is 
also necessary to develop the approximation model 
so that it is possible to diagnose the brakes associated 
with the individual wheels of the vehicle. 
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WYKORZYSTANIE METOD SZTUCZNEJ INTELIGENCJI  
W ANALIZIE WYNIKÓW BADAŃ OPÓŹNIENIA 

HAMOWANIA POJAZDU W DIAGNOSTYCE UKŁADU 
HAMULCOWEGO POJAZDU SAMOCHODOWEGO 

W artykule przedstawiono koncepcję wykorzystania sztucznej sieci 
neuronowej do aproksymacji parametrów opisujących proces 
hamowania pojazdu z punktu widzenia zastosowania tej metody 
w diagnostyce układu hamulcowego. Do aproksymacji zależności 
opóźnienia hamowania od ciśnienia w układzie hamulcowym 
wykorzystano sztuczną sieć neuronową nieliniowej autoregresji. 
Skuteczność sieci neuronowej sprawdzono w zależności od liczby 
neuronów w jej warstwie ukrytej oraz zastosowanego algorytmu 
uczenia. Działanie sieci neuronowej zostało zweryfikowane na 
podstawie rzeczywistych procesów hamowania Skody Octavii, 
realizowanych z różną dynamiką, przy różnych masach samochodów 
i  różnych ciśnieniach w oponach. Po weryfikacji sieci neuronowej 
posłużono się nią do aproksymacji wartości opóźnienia hamowania 
dla wartości ciśnień przekraczających te występujące w zbiorze 
danych wejściowych. Działanie to pozwala na analizę możliwości 
uzyskania przez pojazd opóźnienia hamowania, co kwalifikuje jego 
układ hamulcowy jako sprawny. Przeanalizowano dwie koncepcje 
wykorzystania sieci neuronowej do rozwiązania tego problemu. 
Wyciągnięto wnioski związane z zasadnością rozwoju omawianych 
metod. 

Słowa kluczowe: opóźnienie, diagnostyka, pojazd samochodowy, 
sztuczna inteligencja, układ hamulcowy 
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